
UCD Enrichment Programme in Mathematics

Solutions Selection Test 27 February 2016

1. I have two egg timers. The first can time an interval of exactly 7 minutes. The second can time an interval of exactly
9 minutes. Explain how I can use them to boil an egg for exactly 3 minutes?

Solution. We have 3 · 7− 2 · 9 = 3.

Start both timers at the same time. When either expires, reset it.

Place the egg in the boiling water when the 9-minute timer reaches the end of its second cycle.

Remove the egg from the water when the 7-minute timer reaches the end of its third cycle.

2. Consider the hexagon shown below. Alternately, two players play the following game: in one move one player selects

one edge and colours it red and then the other player selects one remaining edge and colours it green. The winner is
the player to complete first a triangle in their colour.

Show that the player who goes first has a strategy that will always guarantee a win in four moves.

Solution. Denote the vertices by A,B,C,D,E,F. First player picks a vertex A and colours A to B red in the first move,
A to C red in the second move. Other player must colour B to C green in their second move. First player colours A to
D red in their third move. Fourth move is either B to D or C to D.

If the second player colours AC green in his first move, then the first player should colour BF and BE in his next moves.

3. (a) Show that the greatest common divisor of (n+ 1)! + 1 and n! + 1 is 1, for all integers n ≥ 1.

(b) For any n > 1, find integers x, y such that

((n+ 1)! + 1)x+ (n! + 1)y = 1.

[Recall that n! = 1× 2× · · · × n for any n > 1.]

Solution. (Of course, (b) implies (a), but we prove (a) first.)

(a) Suppose that d ≥ 1 is a common divisor of a = (n+ 1)! + 1 and b = n! + 1.

Then d|(n+ 1)b− a = n (using (n+ 1)n! = (n+ 1)!).

Hence d|b− n(n− 1)! = b− n! = 1. So d = 1.

(b) From the solution to part (a), we have

(n+ 1)b− a = n

b− (n− 1)!n = 1.

Thus

1 = b− (n− 1)!n

1 = b− (n− 1)!((n+ 1)b− a)

1 = (n− 1)!a+ (1− (n− 1)!(n+ 1))b

Thus x = (n− 1)!, y = 1− (n− 1)!(n+ 1) are the requested integers.

(Alternatively, apply Euclid’s algorithm to a and b.)

1



4. Prove that for any positive real numbers a, b and c we have

2a+ b

b+ 2c
+

2b+ c

c+ 2a
+

2c+ a

a+ 2b
≥ 3.

Solution. Let
b+ 2c = x (1)

c+ 2a = y (2)

a+ 2b = z (3)

Adding the above equalities we find

2a+ 2b+ 2c =
2(x+ y + z)

3
(4)

Now, from (1) and (4) we find

2a+ b =
2y + 2z − x

3

and similarly,

2b+ c =
2x+ 2z − y

3
and 2c+ a =

2x+ 2y − z
3

.

Thus, in the new variables x, y, z our initial inequality reads

1

3

{
2y + 2z − x

x
+

2x+ 2z − y
y

+
2x+ 2y − z

z

}
≥ 3,

or even
2
(x
y

+
y

x

)
+ 2
(y
z

+
z

y

)
+ 2
(x
z

+
z

x

)
≥ 12. (5)

By AM-GM inequality we have
x

y
+
y

x
≥ 2,

y

z
+
z

y
≥ 2,

x

z
+
z

x
≥ 2.

Adding the above inequalities we find (5) which proves our initial inequality.

5. ABC is an acute triangle and D is a point on the segment BC. Two circles C1 and C2 passing through B,D and C,D
respectively intersect for the second time at P , where P lies inside of triangle ABC. Denote by R the intersection of
C1 and AB and by Q the intersection of C2 and AC.

Prove that P lies on the circumcircle of triangle QAR.

Solution. The quadrlateral DPRB is cyclic, so ∠DPR = 180o − ∠DBR.

Since CDPQ is cyclic, ∠DPQ = 180−o −∠DCQ. Now,

∠QPR = 360o − (∠DPR+ ∠DPQ)

= ∠DBR+ ∠DCQ

= 180o − ∠CAB

= 180o − ∠QAR,

so QPRA is also cyclic.
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6. 25 boys and 25 girls are at a party. Each boy likes at least 13 girls, and each girl likes at least 13 boys.

Show that there must be a boy and girl at the party who like each other.

Solution. Consider all pairs (r, s) where r is a boy, s is a girl, and r likes s. For any boy r, there are at least 13 such
pairs. Therefore there are at least 25 · 13 such pairs in total. From this we conclude that, since there are 25 girls, there
must be a girl who is liked by at least 13 boys. If this particular girl does not like any of these boys, then she can only
like some subset of the remaining 12 boys. But from the statement of the problem we know that she likes at least 13
boys, so this is a contradiction. We conclude that there must be a boy and a girl who like each other.

7. On sides AB, BC and CA of triangle ABC we consider the points M , N and P respectively such that

AM

MB
=
BN

NC
=
CP

PA
=

1

2
.

Prove that:

(a) [AMN ] =
1

9
[ABC] (b) [MNP ] =

1

3
[ABC].

Solution. (a) Denote by Q,R, S the midpoints of BM , CN and AP respectively.

Using the property of the median in a triangle we have [BNQ] = [MNQ] = x. Since triangles BNQ and BCA are
similar, it follows that x = 1

9 [ABC]. Now, NM is median in triangle NQA so [AMN ] = [MNQ] = x = 1
9 [ABC].

(b) As before y = z = 1
9 [ABC] so [MNP ] = [ABC]− 2x− 2y − 2z = 1

3 [ABC].

8. Richard and nine other people are standing in a circle. All ten of them think of an integer (that may be negative) and
whisper their number to both of their neighbours. Afterwards, they each state the average of the two numbers that
were whispered in their ear.

Richard states the number 10, his right neighbour states the number 9, the next person along the circle states the
number 8, and so on, finishing with Richard’s left neighbour who states the number 1.

What number did Richard have in mind?

Solution. Denote the number that Richard came up with by c10, the number of his right neighbour by c9, the number
of the next person along the circle by c8, and so on, finishing with the number of Richard’s left neighbour which we
denote by c1.

From the data we deduce that
c10 + c8 = 2 · 9 = 18,

c8 + c6 = 2 · 7 = 14,

c6 + c4 = 2 · 5 = 10,
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c4 + c2 = 2 · 3 = 6,

c2 + c10 = 2 · 1 = 2.

Adding up these equations yields 2(c2 + c4 + c6 + c8 + c10) = 50, hence c2 + c4 + c6 + c8 + c10 = 25.

Finally, we find c10 = (c2 + c4 + c6 + c8 + c10)− (c2 + c4)− (c6 + c8) = 25− 6− 14 = 5.

Therefore, Richard originally thought of the number 5.

9. For each positive integer n let sn = n! + 20!.

(a) Let q > 20 be a prime number. Prove that there are only a finite number of positive integers k for which q divides
sk.

(b) Find with proof all prime numbers p for which there exists a positive integer m such that p divides sm and sm+1.

Solution. (a) Suppose q > 20 is a prime number and that q divides sk. Note that q does not divide 20! so k does not
divide k!. Hence q > k. but then, if ` ≥ q is an integer, then q divides `!, so, since q does not divide 20!, we have that
q does not divide s`. Thus, the set of positive integers k for which q divides sk is contained in the {21, 22, . . . , q − 1},
so, it is finite.

(b) We claim that p ≤ 19.

Note first that sm+1 − sm = (m + 1)! −m! = m ·m! = m(m! + 20) −m · 20!. Thus, since p divides sm and sm+1, it
must divide their difference, so in the end, p divides m · 20!. If p divides m then p divides m! and since p divides sm it
must divide 20!. Hence p divides 20! and since p is prime it follows p ≤ 19.

Suppose p ≤ 19. Then p divides s19 = 19! + 20! and p divides s20 = 20! + 20!. Thus, all the required numbers are
2, 3, 5, 7, 11, 13, 17, 19.

10. For a real number x denote by [x] the greatest integer not exceeding x.

(a) Find with proof all positive integers k for which [ 3
√
k3 + 20k] 6= k.

(b) Prove that if n is a positive integer, then
[
n+
√
n+ 1

2

]
is not the square of an integer.

Solution. (a) Note that k3 + 20k < (k + 1)3 = k3 + 3k2 + 3k + 1 if and only if 3k2 − 17k + 1 > 0.

The quadratic equation 3x3 − 17x+ 1 = 0 has two real roots

α =
17−

√
172 − 12

6
and β =

17 +
√

172 − 12

6

and
3k2 − 17k + 1 = 3(k − α)(k − β) > 0 if and only if k < α or k > β.

Note that
0 < α < 1 and 5 < β < 6.

Hence, for k ≥ 6 we have

k <
3
√
k3 + 20k < k + 1

which yields [ 3
√
k3 + 20k] = k. On the other hand, for k = 0, 1, 2, 3, 4, 5 we check separately that [ 3

√
k3 + 20k] 6= k.

(b) Let m = [
√
n], so m2 ≤ n ≤ (m+ 1)2. Let r = n−m2 so n = m2 + r and 0 ≤ r ≤ 2m

Observe that (
m+

r

2m

)2
= m2 + r +

r2

4m2
> m2 + r = n

so
√
n < m+ r

2m .

If 0 ≤ r ≤ m then r
2m ≤

1
2 and

m2 +m < n+
√
n+

1

2
< m2 + r +m+ 1 ≤ m2 + 2m+ 1

which shows that

m2 <
[
n+
√
n+

1

2

]
< (m+ 1)2,
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and
[
n+
√
n+ 1

2

]
is not the square of an integer in this case.

Finally, if m+ 1 ≤ r ≤ 2m then
√
n ≥

√
m2 +m+ 1 > m+

1

2

and then

n+
√
n+ 1 > (m2 +m+ 1)m+

1

2
+

1

2
= (m+ 1)2 + 1.

By direct calculations we have

n+
√
n+

1

2
< m2 + 2m+m+ 1 +

1

2
< (m+ 2)2.

Hence

(m+ 1)2 + 1 < n+
√
n+

1

2
< (m+ 2)2

which yields

(m+ 1)2 + 1 ≤
[
n+
√
n+

1

2

]
< (m+ 2)2

and again
[
n+
√
n+ 1

2

]
is not the square of an integer.
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